If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-25=-10x
We move all terms to the left:
3x^2-25-(-10x)=0
We get rid of parentheses
3x^2+10x-25=0
a = 3; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20}{2*3}=\frac{10}{6} =1+2/3 $
| 7x-2÷=x+2 | | 6=44-x= | | 4=2p+4 | | -7x+18=46 | | 3x²+2x–5=0 | | 1x+8=26-10 | | 4x+1=45-3x | | 9^x-84(3^x)+243=0 | | 5x=25+1 | | (8-2x)(12-2x)=59.52 | | 5f^2-27f+10=0 | | 3x+1-x=3-2x+1 | | 8x-24-42-14x=2x+4-25-5x | | 2/x-3=13 | | 3x-5+3x=61 | | 22=10x-18 | | 5m+9=56 | | 22=10c-18 | | 40v^2-14v+1=0 | | h^2-23h+22=0 | | -2x+5=x-5 | | 6y+8=21 | | 3d^2+40d+13=0 | | 49h^2-14h+1=0 | | 3t^2-25t+8=0 | | X=(15x+22)° | | 168+x+78=180 | | 4y+9y=24 | | 78+90+x=168 | | 78+90+x=169 | | -6q-3=-6q-5 | | –4r+10r=6r |